Nonlinear Hierarchical Part-Based Regression for Unconstrained Face Alignment
نویسندگان
چکیده
Non-linear regression is a fundamental and yet under-developing methodology in solving many problems in Artificial Intelligence. The canonical control and predictions mostly utilize linear models or multi-linear models. However, due to the high non-linearity of the systems, those linear prediction models cannot fully cover the complexity of the problems. In this paper, we propose a robust two-stage hierarchical regression approach, to solve a popular Human-Computer Interaction, the unconstrained face-in-the-wild keypoint detection problem for computers. The environment is the still images, videos and live camera streams from machine vision. We firstly propose a holistic regression model to initialize the face fiducial points under different head pose assumptions. Second, to reduce local shape variance, a hierarchical part-based regression method is further proposed to refine the global regression output. Experiments on several challenging faces-in-the-wild datasets demonstrate the consistently better accuracy of our method, when compared to the state-of-the-art.
منابع مشابه
Face Alignment with Part-Based Modeling
We propose a new method for accurate face alignment with part-based modeling. Although we focus on the class of human faces, this method could potentially be applied to any type of deformable object. We aim to learn a regression function mapping a feature representation of the appearance of the face to its shape represented by a set of connected landmarks forming contours around the major facia...
متن کاملTitle of Dissertation : UNCONSTRAINED FACE RECOGNITION
Title of Dissertation: UNCONSTRAINED FACE RECOGNITION Shaohua Zhou, Doctor of Philosophy, 2004 Dissertation directed by: Professor Rama Chellappa Department of Electrical and Computer Engineering Although face recognition has been actively studied over the past decade, the state-of-the-art recognition systems yield satisfactory performance only under controlled scenarios and recognition accurac...
متن کاملFace Alignment by Local Deep Descriptor Regression
We present an algorithm for extracting key-point descriptors using deep convolutional neural networks (CNN). Unlike many existing deep CNNs, our model computes local features around a given point in an image. We also present a face alignment algorithm based on regression using these local descriptors. The proposed method called Local Deep Descriptor Regression (LDDR) is able to localize face la...
متن کاملTrack Facial Points in Unconstrained Videos
Tracking Facial Points in unconstrained videos is challenging due to the non-rigid deformation that changes over time. In this paper, we propose to exploit incremental learning for person-specific alignment in wild conditions. Our approach takes advantage of part-based representation, as illustrated in Figure 1 and cascade regression for robust and efficient alignment on each frame. Unlike exis...
متن کاملBulat, Adrian and Tzimiropoulos, Georgios (2016) Convolutional aggregation of local evidence for large pose face alignment. In: BMCV 2016, 19-22 September 2016, York, U.K.
Methods for unconstrained face alignment must satisfy two requirements: they must not rely on accurate initialisation/face detection and they should perform equally well for the whole spectrum of facial poses. To the best of our knowledge, there are no methods meeting these requirements to satisfactory extent, and in this paper, we propose Convolutional Aggregation of Local Evidence (CALE), a C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016